146 research outputs found

    KELT-1b: A Strongly Irradiated, Highly Inflated, Short Period, 27 Jupiter-mass Companion Transiting a Mid-F Star

    Get PDF
    We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) transit survey. A joint analysis of the spectroscopic, radial velocity, and photometric data indicates that the V = 10.7 primary is a mildly evolved mid-F star with T eff = 6516 ± 49 K, log g = 4.228^(+0.014)_(–0.021), and [Fe/H] = 0.052 ± 0.079, with an inferred mass M_* = 1.335 ± 0.063 M_☉ and radius R_* = 1.471^(+0.045)_(–0.035) R_☉. The companion is a low-mass brown dwarf or a super-massive planet with mass M_P = 27.38 ± 0.93 M_(Jup) and radius R_P = 1.116^(+0.038)_(–0.029) R_(Jup). The companion is on a very short (~29 hr) period circular orbit, with an ephemeris T_c (BJD_(TDB)) = 2455909.29280 ± 0.00023 and P = 1.217501 ± 0.000018 days. KELT-1b receives a large amount of stellar insolation, resulting in an estimated equilibrium temperature assuming zero albedo and perfect redistribution of T_(eq) = 2423^(+34)_(–27) K. Comparison with standard evolutionary models suggests that the radius of KELT-1b is likely to be significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1 with a separation of 588 ± 1 mas, which is consistent with an M dwarf if it is at the same distance as the primary. Rossiter-McLaughlin measurements during transit imply a projected spin-orbit alignment angle λ = 2 ± 16 deg, consistent with a zero obliquity for KELT-1. Finally, the v sin I_* = 56 ± 2 km ^(s–1) of the primary is consistent at ~2σ with tidal synchronization. Given the extreme parameters of the KELT-1 system, we expect it to provide an important testbed for theories of the emplacement and evolution of short-period companions, as well as theories of tidal dissipation and irradiated brown dwarf atmospheres

    The KELT-South Telescope

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26 degree by 26 degree fields around the southern sky, and targets stars in the range of 8 < V < 10 mag, searching for transits by Hot Jupiters. This paper describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of Hot Jupiters around solar-type main-sequence stars.Comment: 26 pages, 13 figure

    The Hawaii Infrared Parallax Program. V. New T-Dwarf Members and Candidate Members of Nearby Young Moving Groups

    Get PDF
    We present a search for new planetary-mass members of nearby young moving groups (YMGs) using astrometry for 694 T and Y dwarfs, including 447 objects with parallaxes, mostly produced by recent large parallax programs from UKIRT and Spitzer. Using the BANYAN Σ\Sigma and LACEwING algorithms, we identify 30 new candidate YMG members, with spectral types of T0−-T9 and distances of 10−4310-43 pc. Some candidates have unusually red colors and/or faint absolute magnitudes compared to field dwarfs with similar spectral types, providing supporting evidence for their youth, including 4 early-T dwarfs. We establish one of these, the variable T1.5 dwarf 2MASS J21392676++0220226, as a new planetary-mass member (14.6−1.6+3.214.6^{+3.2}_{-1.6} MJup_{\rm Jup}) of the Carina-Near group (200±50200\pm50 Myr) based on its full six-dimensional kinematics, including a new parallax measurement from CFHT. The high-amplitude variability of this object is suggestive of a young age, given the coexistence of variability and youth seen in previously known YMG T dwarfs. Our four latest-type (T8−-T9) YMG candidates, WISE J031624.35++430709.1, ULAS J130217.21++130851.2, WISEPC J225540.74−-311841.8, and WISE J233226.49−-432510.6, if confirmed, will be the first free-floating planets (≈2−6\approx2-6 MJup_{\rm Jup}) whose ages and luminosities are compatible with both hot-start and cold-start evolutionary models, and thus overlap the properties of the directly-imaged planet 51 Eri b. Several of our early/mid-T candidates have peculiar near-infrared spectra, indicative of heterogenous photospheres or unresolved binarity. Radial velocity measurements needed for final membership assessment for most of our candidates await upcoming 20−-30 meter class telescopes. In addition, we compile all 15 known T7−-Y1 benchmarks and derive a homogeneous set of their effective temperatures, surface gravities, radii, and masses.Comment: ApJ, in press. 27 pages including 6 figures and 5 table
    • …
    corecore